
INTRODUCTION

It is often thought that agents in the environment that
have an impact on human health generally have chemi-
cal, man-made origins. Thus the first reports suggesting
that one of the most common natural environmental fac-
tors – Gram-negative bacteria present in soil, in water
and on vegetation – was associated with lung disease
among persons handling cotton fibres were received
with disbelief.1 The identification of bacterial endotoxin
as a possible causative agent and supporting experimen-
tal evidence from animal experiments2,3 did little to
improve understanding. Additional difficulties in the
endotoxin case were that there was initially no reliable
method for the measurement of air-borne endotoxin and
there was also a poor understanding of the pathogenesis
of the symptoms among exposed persons. A number of

animal inhalation studies and a few field studies were
published in the 1980s and will be reviewed below.

With increasing understanding of the mechanisms
behind the toxicity of inhaled endotoxin and how these
fit with the pathophysiological mechanisms behind air-
ways’ inflammation, the ground-work was laid for the
emergence of a large number of publications on endo-
toxin in the environment in the late 1990s. The purpose
of this article is to review the present understanding of
the presence of endotoxin in the environment and how
exposure is related to disease in humans. Environmental
exposure is usually through inhalation and because the
cellular effects after inhalation are different from those
seen in vitro and after injection, the focus will be on
endotoxin administered via inhalation. The structure of
endotoxin and the cellular reactions it induces have both
been the subject of extensive reviews and will only be
summarized in this context.

ENDOTOXIN IN THE ENVIRONMENT

Definition

Gram-negative bacteria are ubiquitous in our environ-
ment – as examples, Klebsiella spp., Pseudomonads and
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Enterobacter are found in the soil, on vegetation and in
water.4 They carry and release a specific compound on
their outer surfaces, which is a combination of polysac-
charide chains, a lipid A unit responsible for the toxic
effects in cells, and a connecting core molecule.5

This substance is referred to as endotoxin or lipopoly-
saccharide (LPS). However, the term ‘lipopolysaccha-
ride’ should be reserved to denote the chemically pure
substance, free from all other chemical compounds (an
artificial compound not found in nature). The term
‘endotoxin’ should be used to refer to lipopolysaccha-
ride as it appears in nature, on fragments of Gram-nega-
tive bacteria cell walls with other naturally occurring
components of the cell wall. In water, endotoxin will
detach from the cell wall and be present in the free form
although it is still not a chemically pure LPS.6

Detection

To detect endotoxin, the gold standard as of today is the
Limulus amebocyte lysate (LAL) test.7,8 This is a biolog-
ical test that uses amebocytes from the hemolymph of
the horseshoe crab. The amebocyte is a nucleated, gran-
ular cell that aggregates and forms a clot at the site of
injury.

For the Limulus this is frequently caused by endotoxin
from blue-green algae. The contents of the amebocytes’
cytoplasmic granules can be isolated and used as the
reagent in the LAL test for endotoxin. The activation of
the enzymes in the clotting process can either be read as
a clot formation (clot end-point version) or as the change
in color over time of a dye that reacts with the enzyme
(kinetic chromogenic version). The latter version is used
by the majority of laboratories that determine endotoxin
in environmental samples.8,9

The sample to be tested – air-borne particles collected on
a filter, sedimented dust or a liquid – is elutriated in pyro-
gen-free water and diluted. The lysate is then added and
the ensuing color reaction is recorded using a spectropho-
tometer and compared with a standard endotoxin. The test
is sensitive and detects amounts down to picogram levels
in environmental samples. There is often a variation in
results between different laboratories, probably due to
small and uncontrolled variations in the extraction proce-
dures and the handling of the samples.10 Within one labora-
tory, however, the results are highly reproducible.

To avoid drawbacks related to biological tests, several
attempts have been made to use chemical analysis. The
most successful of these attempts has been the determi-
nation of fatty acids, using gas chromatography.11

Reproducible results have been obtained, but unfortu-
nately the sensitivity of the method is far below that of
the Limulus test, causing limitations to its use in field
studies.

The results of the Limulus test are dependent on the phys-
ical state of the endotoxin in the sample. If it is present in a
water solution (e.g. as Gram-negative bacteria growing in
water in a humidifier), the values represent all of the endo-
toxin present in the sample. If the analysis is made on a dust
sample, where the endotoxin is still part of fragments of the
bacterial cell wall, the results of the Limulus test do not rep-
resent the total amount of bioactive material. Some
attempts have been made to calculate the relation between
the amounts detected in the analysis and the bioactive
amount, suggesting a ratio of 1:10.12

Measured values

The first study of endotoxin in the environment reported
the presence of endotoxin in house-dust13 and water.4

Interest later focused on occupational settings, and endo-
toxin has now been found in a large number of environ-
ments where organic dusts are present. A summary of
some of these environments and the amounts detected is
given in Table 1.
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Table 1. Endotoxin in different general and occupational
environments

Location ng/m3 References

Home
Dust 18–50 21–24,27,83,110
Humidifier 130–3900 111
Drinking water 0.8–1250 112,113

Agriculture
Farming 50–2800 114,115
Dairy barns 25–3480 116
Poultry 33–301 7,117,118
Swine confinement 8–252 15,76–78,119
Rice 49–1341 120
Animal feed 0.2–1870 121,122
Grain dust 286–721 75

Waste
Collecting 0–5 17
Composting 7–53 18
Fuel plant 2–4 123
Sewage 1–32,170 19,20,68,124

Industry
Wood handling 0–375 125,126
Saw mill 0–4000 127–129
Debarking 108–375 16,64
Metal cutting fluid 0–600 130
Potato processing 37–82 131,132
Cigarette manufacturing 38–106 133
Cotton mill 2–314 3,10,72,73,79,134
Brewery 60–927 135
Biotechnology 0.1–12.8 136

Values are equalized to ng/m3 (10 EU = ~1 ng).



The values reported should be regarded as examples –
higher levels have been recorded in other studies and
levels are very low in clean environments with organic
dusts, such as where medical cotton is carded. The table
is not intended to be complete – the number of studies is
now so large that a complete table would be overwhelm-
ing. However, one major purpose of listing some of the
studies is to show that studies were already being done in
the 1970s and 1980s – a fact not always reflected in ref-
erence lists in publications of today.

Although the data are still incomplete, certain occupational
exposures seem to involve particularly high levels. Such
environments are cotton mills, particularly in carding areas,
in swine confinement units and in the early stages of wood
processing such as debarking.14–16 The levels are generally
low in the handling of household waste, except organic
waste, and during composting.17,18 The latter dust usually
contains high amounts of molds. Sewage treatment plants
represent a special case, as endotoxin levels are high at cer-
tain work sites and there is no contamination from molds.19

The sampling of environmental endotoxin usually
involves stationary or personal air samplers and the
amount of endotoxin is expressed as amounts per m3.
The field studies reviewed below show important differ-
ences in sampling strategies. Some studies use sampling
periods over one or several days and others sample for
shorter intervals or specify the work procedures during
which sampling was done. This variation might affect
the levels of endotoxin detected. As an example, it has
been shown that the most important exposure to endo-
toxin in sewage treatment plants occurs in connection
with specific work tasks that for the employee involve
exposures during a limited time.20 A long-term sampling
would thus not detect a peak exposure, which is very rel-
evant as a risk criterion for endotoxin.

Endotoxins are also found in indoor environments and
their presence in house dust was first described some 40
years ago.13 Data are now available from a number of
studies around the world and several of these have eval-
uated factors that determine the amount of endotoxin
found indoors. Examples of such factors are the presence
of pets, living on a farm, use of humidifiers with conta-
minated water, and storage of organic household
waste.21–24 Another source indoors is cigarette smoke.25

A seasonal variation with a lower amount during the
summer and winter periods has also been reported, prob-
ably due to differences in the outdoor number of Gram-
negative bacteria during different seasons.26 Some
studies have, however, not detected such seasonal varia-
tions.27 Apart from these reasons for variation, the fre-
quency of cleaning and life-style factors such as
smoking and poor economical conditions have also been
related to the amounts of endotoxin found indoors.

For sampling in homes, both air-borne samples and
sedimented dust, obtained by vacuum cleaning, have

been used. Whereas endotoxin can be found in most
samples of vacuumed dust, air-borne dust, even with agi-
tation, usually contains no, or very small amounts of,
endotoxin (unpublished data). There is, as yet, no agree-
ment on which fraction of the indoor dust is the most rel-
evant for respiratory effects.

In summary, bacterial endotoxin is a part of our normal
environment and high amounts can be found, particularly
when organic dusts contaminated with Gram-negative bac-
teria are agitated or when humidifiers are operated with
contaminated water. What, then, are the effects when these
aerosols are inhaled?

CELL REACTIONS AND ENDOTOXIN

To understand the disease that develops in man after inhala-
tion of endotoxin or dusts that contain endotoxin, a short
description of the cellular reactions after inhalation provides
a useful background. Detailed reviews on the molecular
mechanisms involved have recently been published.28,29

After deposition in the airways, the lipid A part of the
endotoxin is opsonized by a lipopolysaccharide binding
protein (LBP) present in the fluid on the airway surface,
probably produced both by type II epithelial cells and
exudation from the vascular compartment.30 This type 1
acute-phase protein is, among other proteins, a part of
the body’s defense against external agents. Their role is
to transport the foreign substance to a site of metabolism
and destruction. For endotoxin in the lung, these sites are
macrophages and epithelial cells. Macrophages carry a
surface protein, CD14, to which the LBP attaches. CD14
is also present in a free, soluble form in normal alveolar
fluid, where it facilitates the attachment of endotoxin to
cells without CD14 on their cell membranes such as
epithelial and dendritic cells.31

Although the endotoxin is now attached to the reactor
cell surface, an additional step is required before cell
activation can take place. Data collected in recent years
rather convincingly demonstrate that, for macrophages,
this ‘missing link’ is a Toll-like receptor and that the
TLR-4 form is particularly important for cellular activa-
tion by endotoxin.32,33 TLR-3 may play a role in the acti-
vation of dendritic cells.34

When the endotoxin is internalised, NF-kB initiates
the production of a variety of inflammatory cytokines,
particularly IL-1b, TNF-a and IL-6.35 The ensuing tissue
reactions have been studied in a number of inhalation
models using animals and humans.

THE LUNG AND ENDOTOXIN

The first study on inhaled endotoxin used an animal
model with rabbits.36 The results described cell infiltration
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of alveolar cell walls and oedema. The changes regressed
with increases in exposure time, suggesting habituation. A
guinea pig model was later developed and used both for
studies of LPS and of different organic dusts containing
endotoxin, particularly cotton dust.2,37 A major finding in
these studies was the invasion of neutrophils into the lung
and the airways as illustrated in Figure 1.

Neutrophil invasion into the lung tissue after inhalation
of LPS is rapid, taking place within hours of exposure.38

This is followed by a later penetration into the airways
with a maximum at 24 h after exposure. The invasion
into the lung and into the airways is probably determined
by different mechanisms, as corticoid pretreatment pre-
vents the invasion into the airways but not the migration
into the lungs.39

Other animal studies demonstrated that neutrophil
migration into the airways was caused by chemotactic
factors secreted by alveolar macrophages.40 It was also
shown that the secretion of chemotactic factors was influ-
enced by a pre-incubation with LPS, as illustrated in
Figure 2.

At low levels up to 0.1 mg/ml, the pre-incubation stimu-
lated the secretion of chemotactic factors while concentra-
tions above this value inhibited the secretion. The finding
that the initiation of neutrophil migration requires only a
very small amount of LPS, and the knowledge that LBP is
required for the effect of inhaled endotoxin, limit the use-
fulness of results of studies in vitro with isolated cells
incubated in high concentrations of LPS.

There is also information on the effects of inhaled LPS
on the immune system. It has long been known that endo-
toxin is an adjuvant. As an example, a 5-week inhalation
exposure to ovalbumin did not affect the level of IgG anti-
bodies in the blood.41 When LPS was given together with
ovalbumin, the result was a large increase in antibodies.
The timing of the LPS exposure in relation to the develop-
ment of IgE antibodies was studied in a rat model where it
was shown that a single inhalation of LPS 1 day before and
up to 4 days after an intraperitoneal injection of ovalbumin
decreased the production of IgE ovalbumin antibodies.42

In summary, the results of these and a number of other
animal studies clearly demonstrate that inhalation of
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Fig. 1. Neutrophils (106) in lung wall and airways of guinea pigs at different times after a 40 min inhalation exposure to LPS.35

Fig. 2. Migration in vitro of neutrophils from blood of guinea pigs at
different concentrations of LPS in migration medium. Results are percent
of migration against zymosan. Open circles, neutrophils were pre-
incubated in fetal calf serum containing LPS; filled circles, neutrophils
were incubated in LPS-free fetal calf serum.37
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LPS and dust containing endotoxin initiates the secretion
of inflammatory cytokines that produce an inflammatory
response in the airways. This effect is present at levels of
exposure as low as nanograms/m3, which is a level
encountered and exceeded in a variety of environments.
Against this background, it is of interest to review the
evidence for an inflammatory response in the airways of
humans after an inhalation exposure to endotoxin.

INHALED ENDOTOXIN IN HUMANS

The first inhalation challenge in humans using purified endo-
toxin appeared in 19691 and in the 1980s43–45 and were fol-
lowed by a series of studies using LPS evaluating the
reaction in normal persons and persons with clinical asthma
and studying the cellular reactions.46–49 One study used intra-
tracheal instillation.50 The most widely used end-points were
lung function, airway responsiveness, CO diffusion and the
amount of inflammatory mediators and inflammatory mark-
ers in lung lavage and blood. A summary of an evaluation of
different inflammatory parameters at different times after
exposure is illustrated in Figure 3.

The number of polymorphonuclear cells increases a few
hours after acute inhalation exposure.51 This increase reflects

the previously described secretion of chemotactic factors
from macrophages and a mobilisation of neutrophils in the
blood, following the rapid migration into the lung (Fig. 1).
The amount of E-selectin is also significantly increased, indi-
cating an activation of endothelial cells. C-reactive protein is
increased at 24 h after inhalation, reflecting the activation of
liver cells by IL-6, IL-1 and TNF-a. There is also an increase
in the amount of LBP. Other studies have shown an increase
in the amount of TNF-a in blood a few hours after inhala-
tion52 and an increase in myeloperoxidase and eosinophilic
cationic protein in sputum at 24 h after inhalation.53

Inflammatory cytokines are generally elevated 2–6 h after
exposure, together with neutrophils, whereas other inflam-
matory cells such as macrophages, monocytes and lympho-
cytes are increased at 24 h, a time when cytokines have
returned to normal levels.50,51

LPS inhalation studies have also evaluated the effect in
terms of functional changes such as pulmonary function
and airway responsiveness.45,46,54 These changes are rela-
tively small in normal subjects but more pronounced
among asthmatic subjects, suggesting that the inflammation
induced by endotoxin further aggravates the asthmatic
inflammatory response. Unexpectedly, non-symptomatic
atopics, as defined by a positive skin prick test, are less
reactive to inhaled LPS.51
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Fig. 3. Inflammatory parameters in blood of human subjects at different times after an acute inhalation of LPS. PMN, polymorphonuclear leukocytes; CRP,
C-reactive protein; LBP, lipopolysaccharide binding protein.48
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In the intact animal, LPS does not penetrate to the
blood.55 This suggests that the defense system in the lung is
capable of preventing penetration of inhaled endotoxin into
the blood under normal conditions. It is clear from the
above, however, that the inhalation of endotoxin may lead
to the release of different inflammatory cytokines in the
blood, which may provoke systemic effects. Apart from
inflammatory mediators, cerebral catecholamine has also
been shown to become activated, and serotonin metabolism
is affected by endotoxin exposure.56

How then does the experience gained in inhalation
studies of LPS translate into clinical disease?

DISEASES AND ENDOTOXIN

Early observations reported that persons exposed to a high
concentration of organic dust contaminated with Gram-
negative bacteria developed a flu-like syndrome with
fever, chills, muscle and joint pains and fatigue.57

Subsequent studies on workers in other environments with
organic dusts contaminated with endotoxin and results of
human inhalation studies using LPS have convincingly
shown that this syndrome is caused by an acute inflamma-
tion in the airways. The terminology has changed over the
years and location-related names such as printer’s fever,
mill fever and Monday fever have been used. In view of
the underlying pathology, the disease should be referred to
as ‘toxic pneumonitis’, indicating its character as an
inflammation caused by a toxic, non-infectious agent.
Classic symptoms are an increase in body temperature,
chills and symptoms in the respiratory tract, tiredness and
headache. All these symptoms can be reproduced by
inhalation of LPS and dusts containing endotoxin.49,53,58

The symptoms generally disappear the following day.
Toxic pneumonitis is not unique for endotoxin – it can

also be produced by inhalation of toxic, chemical fumes
and by mold aerosols. The latter exposure is also related to
a risk for hypersensitivity pneumonitis, which has caused
some confusion and the term ‘acute allergic alveolitis’ has
been suggested. It is clear, however, that toxic pneumonitis
is one specific entity, related to a simple inflammatory
response. The inhalation of an aerosol of molds in suffi-
ciently high concentration can give rise to an inflammatory
response similar to the one induced by endotoxin.59

Hypersensitivity pneumonitis requires repeated inhalations
resulting in a sensitisation related to T-cell activation and
invasion of lymphocytes into the lung tissue.60 The mold
cell contains (1®3)-b-D-glucan, that has the ability to
induce changes in lymphocytes and, in high concentra-
tions, cause the formation of granulomas, a typical marker
of hypersensitivity pneumonitis.61,62 The pathogenesis of
hypersensitivity pneumonitis is thus not related to endo-
toxin exposure, nor does toxic pneumonitis comprise part
of the clinical picture for this disease.58

Persons chronically exposed to LPS or dusts contain-
ing endotoxin may develop an inflammation in the air-
ways.47,63,64 This is clinically recognisable as an increase
in airway and general symptoms, increased airway
responsiveness and, at more advanced stages of the
inflammation, a decrease in lung function. The inflam-
mation can be diagnosed by an increased level of inflam-
matory cytokines in blood, broncho-alveolar lavage or
nasal lavage.64–66 Diagnostic instruments are question-
naires and blood, and sputum or lung lavage samples for
determining inflammatory markers or cytokines. While
these end-points can be used to differentiate between
exposed and non-exposed groups and dose-response
relationships can be found, the methods are not as yet
standardised to be used at the individual level.

While it is clear that the airway inflammation caused by
endotoxin may produce a clinical picture that in severe
cases can be diagnosed as asthma, the underlying pathogen-
esis is a non-specific inflammation with no relation to IgE-
mediated reactions or antibodies to endotoxin.

The previously described dissemination of inflamma-
tory cytokines from the lung throughout the blood sys-
tem has as a practical consequence that symptoms of
fatigue, joint pains and fatigue among persons exposed
to LPS or dusts containing endotoxin are a sign of expo-
sure and should be taken into account in health examina-
tions. Symptoms in the joints and tiredness have been
reported by persons working in swine confinement
buildings, in a wood debarking area in a paper indus-
try,64,67 and in sewage treatment plants, where the expo-
sure agent is an almost pure aerosol of endotoxin.19,68

These findings are consistent with the presence and
amplitude of systemic effects found after inhalation of
endotoxin.51

Another symptom reported in relation to endotoxin
exposure is gastrointestinal disturbances. These are pre-
sent among persons that have inhaled LPS and particu-
larly among waste collectors and persons working in
sewage treatment plants.69,70 The reason for these symp-
toms may be the exposure to endotoxins with a new
polysaccharide structure, in comparison to the types that
usually inhabit the intestinal tract.

Several studies show a relation between the risk for
septic shock and endotoxin exposure.71 As the source of
the endotoxin in this case is not the environment, this
disease complex is not dealt with in this review.

FIELD STUDIES

The most commonly used end-point in diagnoses of air-
ways’ inflammation in field studies has been measure-
ments of the forced expiratory volume in one second
(FEV1) and other parameters of lung function. Two stud-
ies in experimental cardrooms used a design in which
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the same subjects were exposed to dust from several cot-
tons with different amounts of endotoxin contamination
but at the same dust level. One of these studies used cot-
ton workers.72 There was no relation between the
decrease in FEV1 after exposure and the amount of dust
but a significant dose-response relationship for endo-
toxin levels that were also related to blood neutrophilia
and symptoms of byssinosis. The other study used naïve
subjects, selected for their airway reactivity to cotton
dust.73 Again, there was no relation between the decrease
in FEV1 and dust but a significant correlation for endo-
toxin. Subsequent studies on workers exposed to grain
dust, farmers and swine confinement building workers
have confirmed that the extent of symptoms and respira-
tory function declines are related to the amount of endo-
toxin in the different dusts.14,74,75

While decreases in FEV1 have been demonstrated
after acute inhalation of LPS and in cross-sectional
occupational studies, longitudinal studies are a better
instrument for determining the risk for chronic disease.
In a study on randomly selected swine farmers in Iowa,
cross-shift changes in lung function as well as the longi-
tudinal decline in lung function over a 2-year period
were related to the amount of endotoxin in the dust.76

Similar findings were reported in studies in Canada77

and in The Netherlands.78 Cotton and silk textile workers
in Shanghai were followed for a 15-year period, and the
longitudinal changes in FEV1 were found to be related to
a high level of exposure to endotoxin.79

Although measurements of FEV1 represent a traditional
method for estimating the impact of inhaled environmental
agents such as endotoxin, it is now clear that it is a rela-
tively insensitive measure of airways’ inflammation and
that wide-spread symptoms of inflammation can be pre-
sent even when the changes in spirometry are rather
small.51,67,80 Some studies have used airway responsive-
ness as an end-point for inhalation-induced effects. In a
study on cotton workers, a dose-response relationship
was found between the exposure to air-borne endotoxin
at the different work sites and the decrease in FEV1 after
inhalation of a standardized dose of methacholine.81 In a
follow-up study in 171 pig farmers in The Netherlands,
however, a relationship with the increase in responsive-
ness over 3 years was found only with the amount of
ammonia in the air.78

In the home environment, which implies a chronic
exposure, a relation has been found between the amount
of endotoxin in house-dust and the severity of
asthma.82,83 A study in Brazil reported a significant rela-
tionship between clinical asthma scores among children
and levels of endotoxin in their homes.84 In a cohort of
499 infants, a relation was found between house-dust
endotoxin levels and wheeze among the children.85

On the basis of toxicological data and experience from
field studies, proposals have been made for guidelines

for non-effect levels for endotoxin.12 They suggest that
the non-effect level for airways inflammation is 10
ng/m3, for general symptoms 100 ng/m3, and for toxic
pneumonitis 200 ng/m3. In The Netherlands, it was later
suggested that 4.5 ng/m3 be the limit based on personal
inhalable dust during 8 h.86

ENDOTOXIN AND BENEFICIAL EFFECTS

Some data suggest that the inflammation caused by
endotoxin might have beneficial effects on the risk for
atopic sensitisation. In a study of 61 infants with a high
risk for sensitisation, it was found that the risk for atopic
sensitisation was inversely related to the amount of
endotoxin in house-dust.87 Among children living on
farms where the prevalence of atopic sensitisation is
known to be low, indoor endotoxin levels were higher
than in a control group.88,89 In another study, the amount
of endotoxin in the house-dust was inversely related to
the presence of symptoms of shortness of breath, skin
rash and cough.90 These data suggest that a certain expo-
sure to endotoxin, with the subsequent secretion of
inflammatory cytokines, might be beneficial for the mat-
uration of the immune system in the Th1 direction, sup-
pressing the risk for atopic sensitisation.91,92

Certain studies have shown an inverse relationship
between exposure to endotoxin and the risk for lung can-
cer. An investigation of the mortality of cotton workers
reported a lower than expected mortality for lung can-
cer.93 This observation was followed by a series of
reports on an animal model in which the growth of
metastasis in the lung was reduced by inhalation of
LPS.94 Studies from Sweden and Italy found the risk for
lung cancer to be lower than expected among farmers
exposed to organic dusts.95,96 These data were corrected
for smoking.

These studies support early observations that exposure to
a ‘fever-causing agent’ derived from Gram-negative bacte-
ria could arrest the growth of tumors.97 The underlying
mechanisms may be an activation of the immune system
with macrophage surveillance and increased secretion of
tumorogenic cytokines (e.g. TNF-a).98 A recent review
paper suggested a need for further research in this important
area.99

CAVEATS

Thus far, this review has produced evidence for a rela-
tionship between exposure to LPS and dusts containing
endotoxin and inflammatory disease in the airways and
the body as a whole. However, the risk evaluation in an
environment is complicated by factors related to the
exposure and to individual susceptibility.
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Chronic exposure

Although a substantial body of information is available on
the acute effects of inhalation of LPS or dusts containing
endotoxin, far less is known about chronic exposure,
which is of greater relevance in terms of environmental
exposures. A phenomenon of adaptation regarding the
clinical outcomes, particularly fever, is well known in the
case of LPS.

With respect to neutrophils, repeated inhalations of
LPS would result in a lower number of neutrophils in the
airways and a lower secretion of TNF-a as compared to
the acute reaction.36,100 A pre-exposure to endotoxin
decreased the response to inhaled grain dust that con-
tained endotoxin.101 The mechanisms of endotoxin toler-
ance was studied in animal models, demonstrating a
decreased production of TNF-a following pre-treatment
with endotoxin.102 However, this habituation could be
overcome by a very large dose of endotoxin or by
another agent interfering with the defence mechanism –
the Cottesloe principle.103

Other data suggest that repeated exposures to LPS
would increase the reactivity of platelets to cell stimuli.104

The production of procoagulant factor by blood monocytes
from cotton workers was increased after stimulation with
LPS as compared to non-exposed persons, suggesting a
cellular sensitisation after chronic exposure to dust con-
taining endotoxin.105 There was also a relation between
procoagulant activity and the decrease in FEV1 after
inhalation of cotton dust.106 These results demonstrate that
the alterations induced by repeated exposures to LPS are
complex and differ according to the effect system studied.
For humans, the adaptation to the fever response could be
interpreted as beneficial but the consequences of a possible
sensitisation of different inflammatory cell systems are not
known.

Other agents

A large number of investigations have used the amount
of air-borne endotoxin to characterize the exposure, par-
ticularly in studies on organic dusts. The real-life situa-
tion involves a combined exposure to a variety of agents,
however, several of which have inflammatory properties
and others the capacity to influence the immune system.
It has been shown that (1®3)-b-D-glucan, a polyglucose
compound in the cell wall of fungi and some plants and
bacteria, can induce an inflammatory response and influ-
ence the inflammatory response due to endotoxin and to
a modulation of the development of antibodies.107 Even
though the case for endotoxin is strong and experience
tells us that it can serve as an indicator of risk, there is
still a need to investigate other potentially active agents
in environments with endotoxin exposure.

Genetic effect determinators

The results of studies in the occupational organic dust envi-
ronment and of LPS inhalation studies demonstrate a con-
siderable inter-individual variability in the response. Even
at high dust exposure levels, a proportion of the exposed
workers do not experience any symptoms or disease. In
challenges with LPS, certain subjects develop fever and a
systemic inflammatory response (i.e. fever, increased blood
neutrophils and CRP) and others will not react.51

Conceptually, differences in the response to organic
dusts or LPS may be due to differences in the mecha-
nism responsible for the toxicity of the agent. One study
showed that the FEV1 response after inhaled LPS was
blunted among persons with mutants in the extracellular
domain of the TLR-4 receptor gene.108 The mutant vari-
ants were present in 5.8% of endotoxin-responsive per-
sons and 22.6% of those who were hyporesponsive.

The results of an endotoxin inhalation study on
European adults demonstrated a difference in reactivity to
inhaled LPS related to TLR-4 gene polymorphism.109

Subjects with a mutant allele +896 AG had a significantly
lower increase in white blood cells and lower amounts of
CRP after an inhalation of LPS. Based on the CRP value at
24 h, all +896 AG subjects except one (94%) were classi-
fied as LPS low-responders in comparison with 27% of the
+896 AA subjects.

These observations support a concept that differences in
reactivity to LPS could be a result of functional differences
in the cellular mechanism responsible for the effects of
endotoxin and of genetic characteristics determining the
degree of reactivity to endotoxin. This concept could have
important applications in the prediction and understanding
of the risk for disease – not only after environmental and
occupational exposures but also in septic shock,71 the mat-
uration of the immune system among children,92 and per-
haps for the risk for lung cancer.99

CONCLUSIONS

This review of the environmental agent endotoxin and its
purified form, lipopolysaccharide, shows important rela-
tions between exposure and disease, particularly in the air-
ways but also of a systemic nature. The major response is
an inflammation, triggered by defense cells, particularly
macrophages but also epithelial cells and dendritic cells.
The production of inflammatory cytokines initiates reac-
tions both in the lung and in the body as a whole. At certain
exposure levels, and/or at certain periods during life, the
exposure may be beneficial and may reduce the risk for
disease. In the real-life environment, it is still an open
question whether the outcome depends solely on the dose
of endotoxin or on the simultaneous presence of other
agents. Some data suggest that genetic determinants may
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be of importance for the effect outcome. The need for fur-
ther research is obvious.
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